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As part of a program to prepare new antithrombotic agents, we . M
discovered that unprotectgétamino esters can be exclusively
C-alkylated. We sought to optimize this process by studying the . ®
structures and reactivities gfamino ester enolatéDetermining
the aggregation state of an enolate, however, is especially difficult
due to the high symmetry of the possible aggregatesnomers,
dimers, tetramers, and hexameesd the spectroscopically opaque
Li—O linkage? Herein we describe a spectroscopic method used
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Figure 1. 8Li NMR spectra recorded on a 0.2 M enolate mixture (50% ee)
in 9.0 M THF/toluene at (A-100°C and (B)—50°C: (blue)R3S;; (green)

to assigns-amino ester enolated)(as hexamers in solution. R2SJ/R4Sz: (black) R1Ss/RsSy; (red) Re/Ss.
o o\—Lli\ Li/(ID\ITit) mixtures using combinations ofL{ij( R)-1 and PLi](9-1 at —100
Li-0 L Li |_|i!‘i—_c')o Oﬁ—'-i% °C (Figure 1A) show both resonances along with considerable
¢} \‘O—\L‘i f | It “noise” in the baseline. Additionally8Li spectra recorded orf{
Li—o Li,15N](9-1 and PLi,*N]rac-1 showLi—15N coupling (d,J.i-n
monomer dimer tetramer hexamer = 3.4 and 3.6 Hz, respectively), confirming chelation as dr@wn.
Li Li L Varying the probe temperature from100 to—50 °C afforded
HN"""0 HN™ "0 HaN" "0 a single sharp resonance fdét.ij( R)-1, offering no evidence of
CH3MOCH3 CH3MOCH3 CH3/3\%OCH3 latent st_ereoisomerism, Iower_symmetry, or rela_te_d structgral
(R (S} rac1 complexity. Conversely, warming samples containing varying

proportions of §Li](R)-1 and PLi](9-1 revealedtwo resonances

To understand these studies we must briefly digress by describing/n liéu of the baseline noisefour resonances in total (Figure 1B).
the dynamic phenomena that are commonly observed for organo-The data are consistent with deep-seated structural complexities
lithium aggregates but may seem surprising to the nonspedalist. that simplify by rapidintra-aggregate exchange at elevated tem-
At the lowest attainable NMR probe temperatures—{L00 °C) peratures. Furthermore, the relative intensities are independent of
fast processes including solvent exchahgenformational equi- the enolate cor_lce_ntrqtion (0:60.40 M) and the_ THF concentration
libria,5 and chelate isomerizatidhsan become observable on NMR ~ (2:0-9.0 M), indicating that the four species are at the same
spectroscopic time scales, with concomitant spectral complexity. @99regation and solvation state.

The spectra typically simplify on warming abov€l00°C due to We considered models based on homochiral aggregies(
time averaging. Further warming of the probe often leads to a Sv) @nd heterochiral aggregaté®,Gu-n). RnSy-n/Rn-nS: andRy/
particularly odd effect in whichintra-aggregate exchanges &fi S\ refer to pairs of spectroscopically indistinguishable enantiomers.

nuclei become fast, whereaster-aggregate exchanges are still DImers RiS: andR2/S,) and tetramersRy/Sy, RiS/ R3Sl' andR;S,)
slow” Consequently, aggregates that differ by virtue of their afford only two and threéliresonances, respectively. Conversely,
aggregation numbers (dimers versus hexamers) or subunit composifoUr discrete resonances are consistent with an ensemble of homo-
tion (4:2 versus 3:3 mixed hexamers) appear as separate specie@nd heterochiral hexamerRe/Ss, RiSs/RsSy, RoS/R4S,, andRsSs.

by 6Li NMR spectroscopy, butach aggregate manifests a single A compellmg picture emerges from a variant of a Job plot (Figure
6Li resonanceThis combination of rapiihtra-aggregate exchange ~ 2) in which the intensities of the four resonances are plotted as a

in conjunction with slowinter-aggregate exchange proves critical function of the mole fraction of subunif}-1, X.° The maximum
to the structural assignments. observed for each aggregate coincides with the stoichiometry of

The5Li NMR spectrum recorded orfl[ij( R)-1 in 9.0 M THF/ the aggregate. The concentration dependencies were modeled as

toluene at-100°C shows a single resonance, consistent with almost follows. 104
any aggregation state of high symmetry. The NMR spectrum

recorded on9Lijrac-1 affords a single resonance at a markedly N
different chemical shift thanf[Li]( R)-1, suggesting the formation Z)n[RnS\,,n] [R.Sy_.]
of a highly symmetricheterochiral aggregate. Partially racemic X = X = "
R n
N N
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Figure 2. Job plot of the mole fraction dRnSs-n/Re-nSh (Xn + Xs-n) as

a function of the mole fraction of the enantiomerXg) at —50 °C. For the
case where = 3, only Xs is plotted. The best fit to the data is also shown:
(blue) R3Ss; (green)R2Sa/R4Sy; (black) R1Ss/RsS:; (red) Re/Ss.
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Xn, the mole fraction of the aggregate, is an implicit function of
Xr and¢, and may be solved by an iterative parametric method. It
is instructive to present the results in terms of the following
equilibria:

[RySy-nl =C

where

Y %o
RS 1/2R6 + l/256 K= 20p,
K 31
RS — 1/2R5S‘1 + l/2R13’5 K, = 100,
K
R3S =1 RS, + RS, Ky = %z

If the aggregate distribution is purely statisticah & ¢1 = ... =
@), thenK; = 0.05,K, = 0.30, andK3 = 0.75. Least-squares fits
illustrated in Figure 2 yield substantially different valuel§; =
1.0£0.1x 103 K, =5.0£ 0.3 x 103 andKz = 1154+ 3 x
1073, From the relationshipnGy, = —RTIn(K/Kstatistica), W€ 0Obtain
the deviations from statistical as follow&G; = 1.734 0.04 kcal/
mol, AG, = 1.82+ 0.03 kcal/mol, andAGs = 0.83 4 0.01 kcal/
mol. Therefore, the heterochir®;S; hexamer is markedly more

stable than the alternative homo- and heterochiral combinations.

An X-ray crystal structure was obtained odc-1 showing a
prismatic hexameR;S;) of S symmetry (Figure 3)>3Consistent

Figure 3. ORTEP ofrac-1revealing a hexameric aggregateSpsymmetry.
Hydrogen atoms are omitted for clarity.
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